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-ON A GENERAL ZERO-SUM STOCHASTIC GAME
WITH OPTIMAL STOPPING

BY

LUKASZ STETTNER (WaRrszawa)

Abstract. In the paper a general zero-sum stochastic game with
stopping is considered. Using the so-called penalty method the author
shows the existence of the value of the game under fairly general
assumptions. - ‘

1. Imtroduction. Let (2, %, P) be a probability space and (#)),», an
increasing, right continuous fam1ly of complete sub-o-fields of #. Let us
* suppose we have two right continuous, (#,),», adapted, bounded processes
(f)s0 and (g,);» o such that f; > g, P-a.e. for eacht > 0. We shall consider the
following game. There are two players and each of them is choosing, as his
strategy, stopping time relative to (#,),» 0. If t and ¢ are stopping times chosen
by the first and the second players, respectively, then the first one pays to the
second the amount equal to e™* f, or e"*’g, according as T < 6 or o < 7.
The aim of the first (second) player is to minimize (maximize) the expectation

F@,0) L E{fico ™ fitYacc ¥ Go}-

For a fixed stopping time 7 of the first player, the second one is interested in
choosing a time o which achieves, or at least approximates, the
supremum sup ¢ (t, a). Thus, if the first player is cautious, he will choose

a

a time giving (or at least approx1mat1ng) the infimum

X=1M3Pf(r o),

ted, o€

where A,, s > 0, denotes a family of all Markov times almost surely greater
than s.
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Reversing the roles of the two players, we also see that an expected gain of
the second player is at least equal to

X /mejra)

€A,

regardless of the strategy adopted by the first player. It is always true that
x < X.The identity x = X holds if there exists a saddle point for the game. In
our situation a saddle point is a pair of Markov times 7, & such that

= #(%, 6) = X. Sufficient conditions for the ex1stence of a saddle point for
the game are given. by Bismut [3].

The main result of the paper is Theorem 3 which shows the existence of the
~ value of the game, equivalently the identity x = X under fairly general
" conditions. Our method of the proof is new and, for instance, different from
that of [3]. Namely, we use the penalization method in a general setting similar
to the one considered in [10]. This method can be described as follows.

First we prove (Theorem 1) that for each f > 0 and y > 0 thére exists a
" 'unique pair of right continuous, (%), o adapted processes b, = bf?, ¢, = b’

which satisfy the equations :

b, = yE{ [ e"@*M=9[(c,+g,—b)* +b]dt| #.},
) :

K2
I

ﬂE{j’ e~ @t p—s) [(b,~f,.—c)* +¢,] dtlg"}}

P-as. for gach s > 0. »
It is possible to prove (Theorem 2) that the limits
b, = lim b and & = lim cf
By 0 D ads
are well defined and under some additional assumptlons one can_show
AA(Theorem 3) that '

x——E{bo Co} = X.

The problem of zero-sum stochastic game with optimal stopping was
introduced by Dynkin [5] for discrete time¢ case. The continuous time game
was considered first by Krylov [6], [7] for diffusion processes and a class of
'standard Markov processes. Later this game was investigated from the point of
view of variational inequalities by Bensoussan and Friedman [1], and by using
_'the convex duality by Bismut [2]-[4]. An extension of resuits due to Krylov
[6], [7] for standard Markov processes will appear in [9].

2. Penalized systems of eguations and their interpretation. In this section we
consider the problem of existence and uniqueness of the solution of equa-
tions (1). We also give a stochastic control interpretation of this solution,
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ie. a problem which consists in finding right continuous, (%), adapted
processes (b,),»o and (c,)s>o such-that the equations

b, = supessE{_f exp [ - j(oc+u2)dr] u?(c, +g,)dt| AN

T uZeM,

cs supessE{jexp[ j(oc+u1)dr]u,(b =f)dt| F}

uleMp

are fulfilled P-a.s. for each's > 0. In the system (2) the symbols MB and M,
" denote the sets of all adapted processes with values from the intervals [0, B]
and [0, y], respectively. The solutions (bys= 0 and (c),> ¢ depend on g and y, so
to be more precise one should write (b"),,, and (c#),5,, and when it is
necessary to emphasize the dependence of the solution on g, y, we shall use this
more cumbersome notation. The systems (1) and (2) will play the main role in
our paper. We have

THEOREM 1. The systems (1) and (2) are equivalent and have, as a umque.

) ‘_solutlon the pair (b, ¢J)s>0 of right continuous, (¥ J)s» o adapted processes for
each posztwe B and y.

Proof. Slm1lar1y as in [10] we introduce a certain Banach space. For every
right continuous, (¥ ),», adapted process f we define the norm

LAl = esssup sup|f (s, ).

It can be verified that the space #” of all right continuous, (%), , adapted
processes f such that || f|| < oo with the norm |} -|| is a Banach space. Now, let
.us note that if (¥, ||‘||;) and (#3, ||-||;) are #-spaces, then the1r Cartesian
'product Wy x#, is the Banach space with the norm

A = max (LAl s}, where £ = (fy. f e #; x #s.

. We define the following transformation ¥ in the spaée "IV, XWy:
) ;1 Tl 2 N V v
lP: (l:zsz:l) , Hl: 2(( 5 2)5/0)] .
. Zg s20 'P (( Zs » )sBO)
vE{f é““”’“‘s’[(23+g,—z,)++23]dtl 7}

CPE{[ e @B I [(gh —f;—22)t +22]dt| F,)
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The transformation ¥ works from %, x #, into ¥, x #, since as the
processes we can take their right continuous modlﬁcatlons We want to check

that ¥ is a contraction.
If z =(z1,2%), w = (w!, w))e ¥, x¥#,, then

1% (z) = & wll
= max {||¥!(z!, 22)— ¥ (w!, wi), [|#2(z"!, 22— P2 (w!, wI)|}

and .
P A= E o, Wl
= supess sup |yE{j e @+NE=3) [(72 +g,—z‘) +zl—
0 —(Witg,— wildt| 7).
- To cdntinue the proof we need the following
Lemma 1. If F(x, y) = B(x—y)" +By, then
IF(z', z)—F(w', W2)| pmax{lz' —w!|, |22 ~w?} (B > 0).

The proof of this lemma is not difficult, and therefore can be omitted. From
Lemma 1 we obtain

¥ (', 2%) =Pt (wh, Wil

= ¢}
< supesssupE { [ e @7 ymax {|z} —w}|, |z} —w,l‘dtl o}
Q 520 s

v
< Z—w
< e

‘and, analogously,

| B
1922, 22— P2 (', Wil < ——[llz—wlll.
| +B
Thus, finally,
f 1
maX 9y By .

NP (@) — Pl < x+max{y, Bl

The last inequality insures the existence of the unique solution of the sys-
tem (1). Using similar considerations as in [10] we can show that this solution

satisfies also the system (2). Now, by the Banach principle we can show the
uniqueness of the solution of (2).
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Let us define the transformation @: # | x %, - W, x W, by

cpl 1, 2
owr-[307)

o0 t .
supessE{ [ exp[— [(@+u)dr]ul(z’+g)dt| F}

uzeM, s

supess E {T exp[ — 3(¢+uf)dr] ul (z} —f)dt| F}

= ouleMy .S
We obtain easily

max {y, B}

mlllz—wm-

e, 2)—ew', willl <

Consequently, @ is a contraction, and thus we have established the
theorem.

Remark 1. Applying Lemma 1 of [10] to the system (1) one can obtain the
third equivalent system of penalized equations:

by = yE{f e (¢, +g,—b)* dt| Z,},

(3) o
' ¢, = BE{f e ¢ (b, —fi—c)" dt| #,}.

CoROLLARY 1. There exists a unique, right continuous, (¥ )., adapted

process (af*),> o satisfying the equation

@ a7 = E{] e I[—B(a—f)* +y(abT—g) 1dt| F,)

P-as. for each s = 0 and, furthermoi'e, ab? = pbr—cbv,
Proof. Obviously, (b, —c,),>, from (3) satisfies (4). By Lemma 1 of [10],
equation (4) is equivalent to : ..

b7 = E{f e TN B, )" +7(a,—g) +(B+aldl] F)

and the transformation

W3 (zg)z0 — (E{f e"”“*”“"s’[—B(Z.Fﬁ)*+v(z,—g,)‘ +
+(B+7)z]dt| F})sso

. is a contraction with the parameter (B+)/(a+f+7) < 1.




}
|

‘and, inductively,.
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From [10] we obtain without difficulty
CoroLrAry 2. The solution of equation (4) is of the form

abr = mfesssupessE{j exp[— j'(ct+u +udydr](u} fi+ulg)dt| F,}

u EMﬂ uzeM

= supessmfessE{j exp[ j(cx+u +ul)dr] () fi+u?g)dt| F}
u EM u EME s

~

P-ae. for each s > 0.

. This corollary explains a probabilistic idea of the penahzed method. The
process d,- Idenotes the value of the game in which the first and the second

~ players stop with densities

H ! t
u' exp[ — j'u} dr] and = ulexp[-— _[u,z a'r],

. respectively.

3. Idemntification of the solution of the system (1) and a limit theorem The
system (1) is a counterpart of a penalized equation studied in [10] in
connection with the optimal stopping. Moreover, it turns out that solutions are
also a-supermartingales. Let us recall that a process (z),», is an a- .
supermartingale if (e"*z,),, is a supermartingale. Namely, we have

ProPoOSITION 1. The solutions of the system (1), i.e. processes (b%?),5, and
(cP?)5 o, are right continuous a-supermartingales.

This proposition follows easily from the form of equations (1) and (3).

Now we can prove the following important convergencc result:

THEOREM 2. If

df
supess b¥? = b, and supess cf’
20,720 20,920

df .
=cs

~ are finite, then (b)), o and (&),s o are right continuous o-supermartingales.

Proof. Let us introduce some additignal notation
L blAY = @1(0,0), ... bUHLEY = @l(pRAY M),
(.5) . B = @2(0,0), ... c"tUET = @2(pmPr, cmh),
It is well known that .

lim %" = bP* and  lim ™7 = 7.

n—o L

If y; <y; and B; < B, then
b;u“v?’l < bsl'ﬂz”'Z, csl"”l"'l < c:,ﬂz.v,

b;"/’v'ﬂ < b;"ﬁz'“’.z', c-;l.lil.v1 < c:,ﬂz,vz
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P-ae. for each s > 0 and ne N. Taking the limits with § — o0 and y — o0 in
the first identities of (5) we obtain

bl»®® = lim bl'P? = supessE{j exp[ — I(a+u2)dr]u, g, dt| F,},

B,y— uZeM

1,0,

ch®® = lim ¢l = supessE{f exp[— f(a+u1)dr]u,( —f)dt| F .}
. Boy— oo weM
P-ae. foreach s > 0. Now, by [10] we notice easily that these processes are
the a-Snell envelopes of the processes (g);>0 and (—f)s»o. This means that
br>®)5% and (c1 '®®) oo are the smallest right continuous a-
supermartmgales ma_]orlzmg 9ss>0 and (—f)s>0, respectlvely Analogously,

prt Lo = supessE{f exp[— _f(zx+u dr]u,z(c"“"m+g,)dtlfs},
uzeM

il — supessE{j exp[ - j'(a+u1)dr]u, (b= f)dtlf}
uleM
are the a-Snell cnvclopes of the processes (¢ +g.)»0 and (B> * —f)s 0.
Now it is easy to see that [(bP™®)s olueny and [(€F ™ ®)» 0lnen are increasing
sequences of right continuous a-supermartingales, and b»®® 1 b,, ¢***® 1 &,
P-ae. for each s as n — oo. This completes our proof.
. Remark 2. Theorem 2 was proved under the assumption that (b)) 0 and
_ (€)s>0 are finite. This demand will be satisfied if we impose the following
‘assumption similar to that introduced by Mokobodzki [8] in the case of
Markov games:
AssuMPTION. There exist two right continuous positive m—supermartmgales

(X)s>0 and (¥)s»o such that for each s

(6) ‘ _ g, < x,—y, < f; P-ae.

We find out immediately that (by);» 0 and (&,),5 ¢ are finite since for each n
we have bP** < x, and ¢*® < y, P-ae. for each s > 0.

4. The main result. In this section we prove the main result of the paper.

THEOREM 3. Assume that the right continuous, (,?J'"‘.,)s>0 adapted bounded
processes ( f )s;o and (g,)s>0 are such that

(i) f; = g, P-a.e. for each s 2 0,

(ii) the assumption (6) holds.

Then © = x = Ed,, where & = L p—¢. Moreover

ar = mfess supcss EIXr<ae o= r).f;'+x:r$te a(a—r)_galg’.}
. teA aeA
r r

= supess infessE {y,<,e "7 f,+ ¥, <, 6" g, | F,}

ageA €A
r r

P-ae. for each r = 0.
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Proof. The proof consists of three steps.

1. First we establish a new representation of (a?7),>,. We need the
following obvious lemma:

LemMa 2. If (d,),»o is right continuous and for each s = 0

[= 4]
d, = E{[ e * Y hdt| F,) P-ae.
8

where (hg)s> o is a right continuous, (¥ ),z adapted, bounded process, then

0.(s) £ dyem2=n 4 fe N pdt

Jor s = r is a right continuous, bounded martingale.
From (4) and Lemma 2 we infer that for each r > 0

i .
0, (s) = abre T4 [ e [ —B(aP—f)F +y(af?—g,) " ]dt
r

is an (#,),», right continuous, bounded martingale. Thus for 7, oA, we
obtain the representation

U a’ = ¢,(r) = E(g,(t A 0)| F,)

— £ 4B, - -
— E'(ag/:y.,e a(tro ')I'g:r}+
TAD

+E{ [ e [—B(@al?—f)" +y(ab7—g) 1dt]| F,}.

2. Equation (7) can be transformed in the following way. First we have

TAG
a2 E{ | e ™ " [—B@l"—f) 1dt| F,} +
r
+E {x#ﬁtag!ye—a(a-')lgr}-}-E {X!<ﬂaf’y e—a(r_r)l g:r}
TAG

> E{ | e " [-Bla"—f)" d]| F,}+

+E_{x”$re—a(a—r) [gd_(ag,y_ga)_]|g'.r}‘*'E'{Xr<aaf’ye_a(t_')|'ﬁr}

with the identity for ¢ = inf{t > r: a®” < g,). Then we obtain
TACG

a7 = supess E{ [ e™""[—B(af"—f)" 1dr+

aeAr r

+Xa$r e—a(o'—r) [ga-(ag’y_ga)_] +X1:<n' af.)' e—a(r—r) l g;r}

P-ae. for each r > 0.
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Similarly,
@®) af < supessE {y,<.e " " [g,—(af" —g.) 1+

oeAd
+le<ae L@ =) F ]

and since for T = inf{r > r: @’ > f;} we have the equality in (8), we finally
obtain

aP? = infess supessE {{occ€ " " got Yoo T fim

ted aeAd_ - -
r r

—Yoe TN@ET —g)T H Lecae (@ —f)T | F )
In a similar way, changing the role of inf and sup operations, we get

al”’ = supessinfessE {{,<. e """ g, + <o " f—

ocA teA
r r

—Xa'ste_a(a_r) (ag,‘l_g”)— +Xr<ae“a(rﬁr)(la£!?_f;)+ I y—'_r} .

3. Our aim is now to estimate the processes ((af’—gy) )»o and
(@®?*—f)")s>0 as B,y » +oo. For this purpose we need the following
lemma:

LemMMA 3. For each s = 0 we have g, € d; < f, P-ae.
Proof. From the system (3) we can obtain

o0
be? = JE{[ ™ 79(g,—ar)* di| 7.},
e

) . |
che = PE{] eI (af < —f)" dt] £}

P-ale. for each s > 0. Let us write

K = (1, 0): g(@)—a"(@) > &}, K° = {t,0): g(0)-a(w) > .
Thus K*' > K* (see Section 2, Corollary 2) and
b2t 2 E{f e ey, dt| F,} > peE{f e Oy, dt| F,}.

Consequently,
by
e
and as y » oo we infer that K* has dt®dP measure zero. Since (g0 and
(G))s o are the right continuous processes and ¢ is arbitrary, we have a; > g,

P-ae. for each s > 0. Similarly, from the second equation of (9) we obtain
i, < f, P-ae. for each s > 0.

2
> E{j‘ e—a(:—s)xxadr_l_u]s} > 0,
s
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Summarizing the results of steps 2 and 3 of our proof we establish the
required assertion of Theorem 3.
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